
1. Data Collection & Preprocessing
• EC Flux Towers: 209 Ameriflux sites
• Landsat 8/9 imagery: 128*128, 30m resolution pixel
• Removed sites lacking key variables (e.g., wind 

direction, tower height) and physically implausible 
values (e.g., negative solar radiation) 

2. Model Architecture
• Carbon Flux Estimator (MLP + MDN): Predicts 

parameters of mixture of Gaussians {αk,μk,σk
2} 

for every pixel.

• Tower Footprint Attender: Learns to predict tower footprint based on tower 
information.

3. Training Objective
• Negative Log-Likelihood of observed flux values. Encourages the MDN to 

learn multi-modal distributions and heteroscedastic noise for uncertainty-
aware flux prediction.
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Accurately quantifying carbon fluxes across ecosystems is essential for monitoring 
and validating natural climate solutions (NCS) which promise to mitigate climate 
change. Measurement methods, such as eddy covariance towers, provide ground 
truth data at high temporal resolution but suffer from limited spatial coverage. 
Upscaling these measurements to ecosystem scales is performed with machine 
learning methods based on environmental drivers and satellite data. However, 
correctly quantifying uncertainty in these predictions remains a challenge, which 
limits its use in carbon markets. We propose an uncertainty-aware carbon flux 
estimation framework that integrates multispectral Landsat imagery, EC flux 
measurements, and ancillary environmental variables using Mixture Density 
Networks. Our framework provides estimates of both aleatoric and epistemic 
uncertainties that enhance the reliability and scalability of carbon monitoring efforts.

Abstract

• Performance: R² 0.74 (val) → 0.72 (temporal test) shows strong 
time-generalization; drop to 0.58 on unseen sites pinpoints the spatial gap.

• Key insights: Water & Barren land exhibit the largest uncertainties; solar 
radiation, air temperature and Landsat Bands 3, 4 & 5 dominate both flux 
and uncertainty (SHAP).

Discussion

• Uncertainty-aware MDN: Combines Landsat imagery, eddy-covariance fluxes, and 
meteorological drivers, outputting carbon-flux predictions with separate 
aleatoric + epistemic uncertainty.

• Uncertainty quantification improves prediction reliability, directly informs data 
acquisition priorities, strengthens Natural Climate Solutions validation, and 
supports robust climate policy and carbon market integrity.
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4. Uncertainty Quantification
• Aleatoric Uncertainty: Noise inherent in the data (modeled via σ2 within 

each Gaussian component).
• Epistemic Uncertainty: Model uncertainty captured by dispersion among 

mixture components (μk).
• Single Forward Pass approach (no expensive Monte Carlo sampling) to 

efficiently estimate both uncertainties:

Full Paper

Figure: MDN-based architecture combining Landsat and meteorological inputs for carbon flux prediction and uncertainty estimation.

Figure: Distribution of R2 scores by site (left) and scaled aleatoric (AU) and epistemic uncertainty (EU) summary (right) across IGBP 
categories for the future test set. AU and EU are scaled by the predicted mean to allow comparison across categories.

Figure: SHAP plots for predicted flux (left), aleatoric uncertainty (middle) and epistemic uncertainty (right)

Introduction
• Natural Climate Solutions (NCS) like reforestation and

conservation are vital for climate change mitigation, 
policy decisions, and integrity of carbon markets.

• Ground methods like eddy covariance towers offer 
precision but lack spatial coverage.

• Remote sensing + ML enable upscaling, but most traditional 
models provide point estimates with no uncertainty.

• Mixture Density Networks (MDNs) offer a solution: 
We explore MDNs for uncertainty-aware carbon flux 
estimation using Landsat imagery + environmental data.

• Accurate carbon-flux estimates with quantified 
uncertainty are critical: larger uncertainty leads to steeper 
discounts on the carbon credits projects can claim.

Figure: Flux tower footprint

The model achieves R2 values of 0.7958, 0.7363, 0.7239, and 0.5829 on the training, 
validation, future test(withheld data from the last year of each training site), and site 
test set(withheld sites), respectively.

Methodology

Figure: Tower locations included 
in our dataset

Figure: 1-day integral of carbon flux Figure: Average carbon flux emission per month. Net emission is positive during 
few months in winter. 

Figure: Spatial distribution of uncertainty in 
carbon flux predictions, with higher 
uncertainty observed in water bodies.

Figure: Relationship between uncertainty and flux values. Uncertainty 
increases with flux and plateaus beyond a certain value.


