
DXT-Explorer visualization focusing on different operations of the I/O application

Interactive I/O phases visualization in MPI-I/O and POSIX layers

DXT Explorer generates meaningful interactive visualizations and a set of recommendations
based on the detected I/O bottlenecks using Darshan DXT I/O trace

Propose a novel interactive, user-oriented
visualization, and analysis framework called
DXT-Explorer

• Extract I/O behavior from log data

• Visualize large-scale I/O trace data

• Provide actionable recommendations

github.com/hpc-io/dxt-explorer

INTERACTIVE I/O

VISUALIZATION

High-performance computing (HPC) enables
large-scale simulations and data processing at
unprecedented speed, driving scientific
innovation. However, achieving peak
performance is challenging due to bottlenecks
across subsystems.

Central challenge: I/O subsystem is often a
performance bottleneck in HPC systems

In this work, I focus on TWO thrusts to
analyze and optimize I/O performance

Why does I/O bottleneck occur?
• Unbalanced workloads
• Resource contention
• Poor cross-layer tuning

Key limitations in state-of-the-art

I/O
Problems

Trace
Collection

if problem persists

?

Applying
I/O Tuning

Trace-to-insight gap High Tuning Cost

Propose a framework called SmartIO that
combines three components (prediction,
extraction, optimization) together into an end-
to-end runtime workflow.

Prediction
Uses context-free grammars to
detect recurring patterns and
predict future I/O calls from the
current point of execution

Towards End-to-End I/O Analysis and Optimization of HPC

Systems
Hammad Ather

Advisors: Hank Childs & Allen D. Malony

Extraction
Extracts I/O behavior from
predicted calls

Optimization
Applies runtime tuning rules
for HDF5, ROMIO, Lustre using
a rules-based system

ABSTRACT

INTRODUCTION

I/O remains a major performance bottleneck in
HPC systems, especially with the growing
complexity of AI, ML, and data-intensive
workloads. Existing optimization tools struggle
due to a disconnect between collected trace
data and actionable insights, and often rely on
costly, non-scalable tuning methods. This work
proposes two solutions: (1) an interactive I/O
visualization framework to bridge trace analysis
and optimization, and (2) a lightweight runtime
workflow that enables on-the-fly I/O tuning
without prior training or profiling. Together,
these approaches reduce tuning overhead and
enhance I/O performance for scientific and AI
workloads.

RUNTIME I/O OPTIMIZATION EXPERIMENTS

DXT-Explorer also focuses on other facets
of I/O behavior such as transfer sizes and
spatial locality of requests. Combined,
they provide a clear picture of the I/O
access pattern and help identify root
causes of performance problems.

No prior
profiling. No

model training.
No exhaustive

parameter
searches!

Conducted experiments on Cori and Summit
using DXT-Explorer with OpenPMD and AMReX

Conducted experiments on Ruby and Lassen
using SmartIO with IOR and Flash-X

•Added ASYNC
I/O VOL
Connector
•Set the stripe
size to 16MB

Optimizations

Real-time read and
write bandwidth
speedup relative to the
baseline at each
timestep on two
systems (C1 and C2)
using SmartIO on IOR

Real-time I/O
bandwidth speedup
relative to the
baseline at each
checkpoint on C1 using
SmartIO on Flash-X

CONCLUSION AND FUTURE

WORK

• Developed an interactive visualization tool to
diagnose I/O bottlenecks at scale.

• Designed a lightweight runtime workflow for
on-the-fly I/O tuning without prior profiling.

• Future work: Integrate LLMs to learn
optimization rules from trace data and
research papers.

https://github.com/hpc-io/dxt-explorer
https://github.com/hpc-io/dxt-explorer
https://github.com/hpc-io/dxt-explorer

	Slide 1

