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INTRODUCTION

Why LLM for Embedding tasks?

• LLMs pretrained with all input tokens, much more

sample-efficient than encoder-only models.

• LLMs excel at instruction, an ideal choice for

building universal text embedding models.

Limitations:

• Current LLM-based embeddings excel in English but

underperform in multilingual scenarios.

• LLMs’ causal attention mechanism restricts the

model’s attention to only preceding tokens.

• Lack of comprehensive evaluations benchmark for

multilingual text embedding.

➔ LUSIFER: zero-shot approach to adapting English-

focused LLM for multilingual text embedding tasks.

➔ LUSIFER’s benchmark: 123 diverse datasets in 14

languages, focusing on five fundamental embedding

tasks

EXPERIMENTS

LUSIFER’S BENCHMARK

LUSIFER includes the three key components:

• Multilingual encoder as language-universal learner

• Connector with minimal trainable parameters

• Target LLM optimized for embedding tasks

Two-Stage Training:

• Stage 1: Cross-Lingual Representation Alignment:

Establishes a universal semantic space connecting

multilingual encoder with English-centric LLMs

• Masked Reconstruction: Predicts original tokens from

corrupted inputs using cross-entropy loss.

• Autoregressive Completion: Generates answers for QA

• Stage 2: Representation Finetuning: enhances

embedding quality through contrastive learning

while maintaining cross-lingual alignment

• Bidirectional Attention: Integrates forward and

backward context modeling to improve sequence

representations

• Representation learning with in-batch negatives

contrastive loss
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MAIN RESULTS

Ablation Study

• Should allow the multilingual encoder and the LLM to be finetuned 

during training 

• Two-stage training approach complement each other, especially the 

importance of the representation finetuning stage

Visualization

• Present a more mixed distribution of languages, with overlapping 

clusters across different languages

➔ Lingual-agnostic capability, bridge the gaps between representation 

spaces of different languages
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