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Introduction

Discussion
• Dissimilar tasks have improved remembering due to low overlap.

• Surprisingly, overlap impedes remembering in intermediately similar tasks.

• Overlap aids transfer when tasks are similar while low overlap also aids transfer.

• Overlap aids zero-shot learning, though it is not reflected in the metric plot.

• Compare how overlap and connectivity impact rem. and transfer in multi-layer 
networks.

• The brain uses variable sparsity across layers; we want to explore how this is 
useful for continual learning [4].

• Develop gating methods to improve transfer while maintaining overlap and 
validate using MNIST/CIFAR100/RL experiments.
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Artificial Neural 
Networks (ANNs) 
adjust weights to 
learn  tennis like a 
brain adjusting 
neurons.

However, a brain 
can use shared & 
unique neurons for 
subsequent tasks, 
ANNs must update 
all their neurons.

ANNs forget
previously learned 
tasks. The brain
transfers
knowledge 
between tasks [1].

Gating methods 
select sub-
networks to learn 
task specific tasks, 
in this case tennis, 
like a brain [2]. 

Gating selects a 
new sub-network 
for ping-pong; 
however, this 
prevents transfer, 
and it must learn 
from scratch, 
unlike the brain.

Gating allows 
remembering for 
tennis, yet no skills 
transfer from ping-
pong, making the 
robot less skilled at 
tennis than the 
boy. 
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As gating increases, 
transfer & rem. show 
inverse performance [3].

How do we improve 
gating performance?

Task 1 Task 1 & 2Task 2 Inactive

𝒈*:

𝒈$:

• 3 active for each task
• 3 shared between tasks
• 6/10 = 40% sparsity
• Overlap = 0.5

Random gating has fixed overlap for 
each task. Deterministic gating has low 
overlap and high overlap for dissimilar 
and similar tasks, respectively.
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